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Abstract. Using Fourier transforms within two-dimensional spaces is one of the usual 
methods employed to obtain a convenient image reconstruction from a sample of transaxial 
tomography data. However, this task can also be achieved via a thorough study of a 
Fredholm equation of the first kind with finite boundaries, i.e. admitting a disc as integration 
domain. With appropriate polar coordinates and utilising furthermore a power series 
representing l / rMM!,  the Fredholm equation can be split into a denumerable set of new 
one-dimensional equations. Afterwards, suitable methods of solution are offered, taking 
into account the fact that all the equations studied belong to a class of ill-posed problems. 
The transformations pointed out here will also be helpful for handling as correctly as 
possible some related and more difficult non-linear problems, e.g. image reconstruction 
from time-of-flight data measured on ultrasonic pulses. 

1. Primary and secondary data 

The sampling conditions for the raw numerical data from x-ray scanners are illustrated 
in figure 1. A source S supplies, through a convenient collimator, a thin parallel beam 

Figure 1. Schematic equipment for primary data measurements. 
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of x-rays, the intensity of which is measured by the means of an appropriate receiver 
R. Along the straight path SR, absorption occurs between A and B, i.e. inside the disc 
D (generally assumed to have unit radius) which contains the studied slice (or virtual 
cut C)  of the investigated object. If Io is the initial intensity (at the output S )  and I 
the attenuated intensity at the receiver, we know that 

where ds  is the elementary length along AB and u ( M )  the absorption coefficient 
defined in the close vicinity of point M. It appears then valuable to associate to the 
middle-point N of AB (polar coordinates r, cp) the positive value 

J(r ,cp)=ln($) =[AEu(M)ds.  

Scannographs are moreover equipped with an automatic device for modifying both 
the distance r = O N  and the angle between O N  and the x axis; discretised shifts Ar 
are first obtained when S and R slide, as a whole, along direction z’z and then, after 
complete runs, other shifts Acp are performed through a rotation around the centre 0 
of D. We thus collect a sample of the function J(r ,  cp), corresponding to regularly 
spaced values of r and p (0 s r s 1,0 .s cp 27r) and this set constitutes the primary data. 

Now, to set up an image reconstruction of C, we have to compute everywhere 
u ( M )  which is the unknown in equation (1.2). As the integration domain (path A B )  
does not remain the same for each point N, it appears that the available integrals 
J (  r, cp) are not of the usual type characterising Fredholm equations. A direct inversion 
will nevertheless be possible in such cases, using particular properties of Radon 
transforms in R2 spaces (Radon 1917, Guy et a1 1975). It is, however, also possible 
to obtain from (1.2) another expression, this time of the Fredholm species. Assuming 
a sufficient accuracy for our available set of primary data J(N),  we may compute a 
new function f ( M ) ,  defined as (Barrett and Swindell 1977) 

f ( M ) =  J ( N ) d a  (1.3) 4- 
where r is the circle admitting OM as diameter while a is the angle OMN (see figure 
2). Here, using interpolation methods when necessary, we are able to determine, 

Figure 2. Secondary data computation. 
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without too much difficulty, any desired value off(  M) through a numerical integration. 
In practice, we are going to choose once more a discrete and convenient set of points 
M, in order to attain finally a computerised sample of the secondary data f(M). 

2. Establishing two types of Fredholm equations? 

When all the sampled points M are chosen inside the disc D, we can rewrite formula 
(1.3) as 

/ (M)={ 1 mdcT'=(Ku)(M). 
D ~ M M ,  

To verify the correctness of (2.1), let us examine figure 2 a little further, considering 
now M as the origin for the polar coordinates rMM, and a, AI' representing any point 
belonging to AB. First, we can split (1.2) into two parts, i.e. 

During this step, M' goes from M to A for the first integral and from M to B for 
the second one. Afterwards, we have 

where d a '  symbolises the elementary surface around M'. We find consequently from 
(1.3) 

f ( M ~ = 1 ~ d a ( l : U ( M ' ) d r M , , +  

The equation obtained is a Fredholm one inside R2 space: the unchanging integration 
domain appears to be the whole disc D and we are working with the symmetric kernel 

K (M, M') = K (M',  M) = 1/ rMMr ( 2 . 5 )  

which presents a weak singularity (in Mikhlin's sense) for M = M' (Mikhlin 1960). 
Moreover, it is interesting to notice that K (M, M') presents a typical convolution 
structure as rMM, is the length of the difference between two vectors with the same 
origin, namely 

rMMj = (OM'-  OMl. (2.6) 

As regards the last symbolism ( K u )  (M) utilised in (2.1), the notation K simply 
indicates the integral operator simultaneously related to the kernel (2.5) and to the 
bounded integration domain D. 

-- 

i In the present paper, we consider as a Fredholm equation (in a somewhat broad sense) any linear integral 
equation linked to an invariable integration domain D. 
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To obtain another Fredholm equation, let us denote by Il the whole plane R 2  
containing D. To build up equation (2.1), we have implicitly admitted the constraint 
( M ,  M ’ )  E D x D but this is not absolutely necessary. When we are allowed to consider 
also points outside D ( J ( M ,  M ’ )  E II x II), it will be convenient to write down the 
extended transform 

which results from remarks analogous to those previously pointed out in (2.2)-(2.4). 
We have only to start from 

I- 

J ( N )  = J u ( M ’ )  ds  
L 

L being the whole straight line perpendicular to ON at N. Furthermore, when M’g  D, 
we will assume U( M’)  = 0 as we want an unchanged function f( M )  inside D. Formula 
(1 .3 )  remains valid for M $ D and the new geometry for the integration along r is 
clearly illustrated in figure 3.  

FigureJ. Prolonged computation forf(M) with U( M’)  = 0 if M’E D(+J( N )  = 0 if N .@ D ) .  

Equation (2.7) is very attractive as the convolution structure of the kernel (2.5) is 
suitably associated with the unboundedness of the integration plane II. In such 
favourable circumstances, we know that the convolution theorem can be applied 
(Papoulis 1962, Brigham 1974). We have consequently 

(2.9) 

(2.10) 

F2 representing the operator associated with Fourier transforms in R 2  spaces; it appears 
that (2.10) is a real key formula which is presently widely employed for effective image 
reconstructions. 
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3. Splitting the bounded Fredholm equation 

We are now going to focus our attention on the bounded Fredholm equation (2.1) (i.e. 
for which the integral operator is working upon a bounded domain, here D). Unfortu- 
nately, as the convolution theorem cannot work when we have to deal with finite areas, 
we must construct other inversion techniques, very different from the satisfactory one 
corresponding to formula (2.10). 

The cylindrical symmetry, which characterises the integration domain D, must 
firstly be recalled. Then, utilising the polar coordinates ( r ,  8, cp) and ( r ' ,  e', cp') to 
specify M and M' respectively, and putting 

r< = inf( r, r ' )  

r ,  = sup(r, r')  

we can represent 1/rMM', within R3 space, by the expansion (Eyring et a1 1946) 

(3.1) 

In (3.2), Piml(cos 8) denotes the associated Legendre polynomial of argument cos 8, 
such that (Eyring et al 1946, Magnus et a1 1966) 

For our present problem, we only need an expansion of l/rMM' inside R 2  space. The 
required formula is deduced from (3.2) by putting 8 = 8' = 7r/2 (+cos 8 = cos 8' = 0). 
The kernel becomes 

(3.4) 

The constant values Pk"(0) are deduced from (3.3) and are well known. If we have 
simultaneously Iml s n and lmJ + n even, then 

In all other cases Pkml(0) = 0. 

for K ( M ,  M ' ) ,  namely 
Replacing now n by Iml+21 in (3.4), we can write down an interesting expansion 

m 

K ( M ,  M ' )  = 1 k i ( r ,  r')[cos(mcp) cos(mcp')+sin(mcp) sin(mcp')] (3.6) 
m = O  

with the following definitions of the introduced auxiliary kernels 

1 "  
r> I=o 

ko(r, r') =- [P~,(0)]'z2' 

(3.7) 
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where z is the ratio r</r,. As d d =  r’dr’dcp’, our primary equation (2.1) becomes, 
utilising (3.7), 

f ( M )  =f(r, cp) = lo1 r’km(r, r‘) dr’ 
m=O 

x [02T[cos(mp) cos(mcp’)+sin(mcp) sin(mcp’)]u(r’, cp’)dcp’. (3.8) 

At the present stage, it seems highly convenient to write down the Fourier series (as 
regards cp or cp’) associated with both bounded functionsf(r, cp) and u(r’, cp’), such that 

uo(r‘) 1 3c 

u(r’, cp‘) =-+- C [uC,,(r’) cos(mcp’)+us,m(r’) sin(mcp’)] 
277- T,=l 

(3.9) 

where indices c and s used in partial functions f and U merely indicate that we have 
a cosine or a sine multiplication factor. Putting expansions (3.9) into (3.8) and then 
integrating over cp’ from 0 to 277- gives straightforwardly a splitting of our initial equation 
(2.1). We now have to solve the following unidimensional equations: 

2rr 

fo(r) =L J f(r, cp) dcp = Jo1 r’ko(r, r’)uo(r’) dr‘  

?? lo1 
77- ld 

277- 0 

and for m > 0: 

.L,m(r)=’ lo2T.f(~, (01 cos(m9) dP = r’km(r9 r‘)uc,m(r’) dr’ 

&,,(r)=’ lo2vf(r,  cp) sin(mcp) dcp = r’k,(r, r’)us,,,,(r’) dr‘. 

We are thus given ‘infinitely many’ integral equations of the first kind and we have 
easy access to all inhomogeneous terms fo(r),fc,,( r )  andf,,,( r); the kernels r’km(r, r’) 
are also completely known through formulae (3.7). If we are able to solve these 
uncoupled equations, the determination of u(r, cp) will result from a mere sum as 
indicated in the second formula (3.9). 

(3.10) 

4. Solving possibilities for ill-posed integral equations 

Many authors have emphasised the fact that Fredholm equations of the first kind 
belong to a class of ill-posed problems. Starting from a function u(x),  we can build 
up f ( x )  through the transformation f ( x )  = (Ku)(x),  K being a Fredholm integral 
operator. Conversely, when the preceding function f ( x )  is given, we know that u ( x )  
is effectively a solution for (Wu)(x)  =f(x) :  however, this last equation will be said to 
be an ill-posed one if some slight modifications performed uponf(x) (at least, round-off 
or random errors in measurements) are able to induce unbounded changes in u ( x )  
(Hadamard 1902). 

It is not very difficult to verify that equation (2.4) is effectively ill-posed. A quick 
check of this results from an examination of the transforms of two very simple functions 
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U( M’),  both presenting a cylindrical symmetry around 0 and consequently noted 
u(r’ ) .  On the one hand, when we choose u l ( r ‘ )  = 1 ,  we find that (see appendix and 
figure 4 )  

where E ( r )  is the complete elliptic integral of the second kind (Jahnke et a2 1960, 
Magnus et a1 1966), i.e. 

+Vr E [ 0 , 1 ]  4 sfI ( r )  s 2 5 ~ .  (4.2) 
On the other hand, starting from u2(r’) = 1 / ( 1 -  r’2)1’2, we obtain the result (see the 
appendix) 

Here, u2( r’) becomes unbounded for r’ = 1 but the integral (3.8) remains computable. 
Now, i f f l ( r )  = 4 E ( r )  is slightly modified and replaced by 

f ( r )  = 4 E ( r ) + ~  (4.4) 
we can tell from (4.1) and (4.3) that an original is 

E 1 
u (r ’ )  = 1 +- =* ( 1  - p ) 1 / 2 ‘  (4.5) 

Thus, a weak distortion of f l ( r )  (addition of a small value E )  is clearly able to lead 
to a noticeable unboundedness of u(r’ )  as soon as r’ is sufficiently close to one. 

Obviously, when we wish to reconstruct an original from an enciphered transform, 
it becomes necessary to avoid such troubles. An interesting technique of assays 
(Tikhonov and Arsenine 1976) consists of working according to the following lines. 

Figure 4. Parameters and variables for calculation of integrals: Iml= r ;  IOM’I = r‘;  
distance HM’= s; and angles a, p, p, cp’ and ,y are as shown. 
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Firstly, we will choose a set of functions u,(M’), u , (M’) ,  . . . , u,(M’),  . . . , such that 
any acceptable solution u ( M ’ )  can be represented as a sum 

X 

u ( M ‘ ) =  akuk(M‘). 
k = O  

Then, we have to calculate all the direct transforms 

(4.6) 

Next, f ( M )  being given, we have to find the best approximate solution (e.g. through 
the least-squares method) for the finite expression 

A sufficiently accurate knowledge of the coefficients ak present in (4.8) immediately 
gives an approximate original u ( M ’ ) ,  without theoretical defects, equal to the sum 
(4.6) truncated just after the term a,u,( M ’ ) ;  such a process automatically eliminates 
f romf(M) the unwanted parts which lead to a poor and frequently false reconstruction 
of u ( M ’ ) .  

5. Computing properties of some simple functions 

Let us return to the uncoupled equations (3.10). Some further remarks are very helpful 
here when we try to solve this system if we assume that the whole solution u ( r ’ ,  cp’) 
shall be analytic (Whittaker and Watson 1927, Flanigan 1972) (all partial functions 
U=,,,( r ’ )  cos( mcp’) and us,,,( r ‘ )  sin( mcp’) are then also analytic). Consequently, power 
expansions of ~ ~ , ~ ( r ’ )  (or of uS, , , (r’))  will present the form 

uc, , , (r’)  = r ” ( c 0 +  c Z r ’ * + .  , .+ C 2 k r r Z k  +. . .). (5 .1)  

Series of the preceding type are actually necessary as any term r tP  cos(mcp’) will be 
analytic if and only if p = m + 2k (k  E N). 

Now, it becomes interesting to equate each uC,,,(r’) (or us,,,(?’)) to a sum closely 
related to (4.6). Let us write, recalling in our formalism the existence of parameter m, 

(5.2) 

Here, for a given m, we must use a set wk(r’; m )  forming a kind of basis such that 
linear combinations of the wk are able to give all the authorised series (5.1) and nothing 
else. Note that the wk are independent of the angle cp’ while this is not usually the 
case for the u k  present in (4.6). 

An important choice of functions w k (  r ’ ;  m )  is obviously available but, in practice, 
it appears most convenient to select those for which the transforms (4.7) will be easy 
enough to compute. In that sense, the following set: 

w k ( r ’ ;  m )  = r”(1 -  r r 2 ) k  (5.3) 
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seems attractive as the related transforms 

are such that the radial functions & ( r ;  m )  can be computed through finite sums of 
unidimensional integrals. The results are (see the appendix) 

m / 2  

p = o  
fk(r; m)=(-1)m’2 c Tmpkrm-2p 

a/ 2 

x 1 cos(mx) sinm-’PX(l- r2 sin2x)p+k+l/2 dX for m even 
J o  

Tmpk=4(-1)’(;) jol t 2 p ( l - f 2 ) k d t  

= 2( - 1) Pk ! (g ) ( ’fik ( j + i,) -’ 
j = p  

(5.5) 

(5.6) 

6. Solved examples 

To show clearly how to use formulae (5.1)-(5.5), we give two examples of a u ( r ’ ,  cp’) 
reconstruction. A careful prior determination of the transform 

exp( - rf2) 
~ M M ’  

dw’ 

gave the sampled values gathered in table 1. 
For m = 0, our corresponding basic functions are 

wk(r’; 0) = (1 - r’2)k 

Table 1. 

r f(r) r f ( r )  

0.0 4.692 435 0.6 3.753 514 
0.1 4.663 292 0.7 3.461 057 
0.2 4.577 032 0.8 3.145 942 
0.3 4.437 042 0.9 2.807 128 
0.4 4.248 597 1.0 2.398 127 
0.5 4.018 333 



4376 J Guy, Ch Guilpin and A Sulks 

Utilising (6.2) to determine numerically the first four functions fk(r ;  0) ( 0 6  k=z 3), we 
obtained by the least-squares method 

f(r)-0.365 749fo(r; 0)+0.389 622f,(r; 0)+0.124387f2(r; 0)+0.120298f,(r; 0) 

*u(r’) = 1.000 056-0.999 289r”+0.485 280rf4-0.120 298rt6. (6.3) 
The last obtained function u(r‘) appears to be a rather good reconstruction of the 
original, especially when we remember that only four basic functions wk(r‘; 0) were 
effectively employed. A quick comparison between true and reconstructed values is 
permitted through table 2. 

For our second example, we decided to start from the original function 

1 
u(r’ ,  p‘) =- r ’2(uo+u2r’2+u4rr4)  cos(2p’) 

?r 

1 
= - u , , ~ (  r ’ )  cos(2p’) 

?r 

the coefficients of the radial part being chosen in such a way that 

U, = 7.068 585 

[ d ~ , , ~ / d r ’ ] , ~ = ~ . ,  = 

u,,~( 1) = 0.9 
~ , , ~ ( 0 . 7 )  = 1.5 

(6.4) 

(6.5) 

We have firstly computed a sample of values for the transform fc,2(r) (i.e. when 
r = 0.00,0.05,0.10, . . . , 1.00), utilising the integrals (3.10). Moreover, a random 
Gaussian error (with a standard deviation U = 0.001) was added to each result, in order 
to examine empirically the image reconstruction behaviour under the effects of such 
randomised discrepancies. Some of the so-obtained ciphered data are now given in 
table 3. 

Table 2. 

u ( r ’ )  Absolute 
r‘ exp( -P) reconstructed relative error 

0.0 1.000 00 1.000 06 6 x 
0.2 0.960 79 0.960 85 7 x 1 0 - ~  
0.4 0.852 14 0.852 10 5 x 10-5 
0.6 0.697 68 0.697 59 1 x 1 0 - ~  
0.8 0.527 29 0.527 75 9 x 1 0 - ~  
1 .o 0.367 88 0.365 75 6 x 

Table 3. 

0.0 0.000 00 
0.1 0.080 45 
0.2 0.311 78 
0.3 0.665 12 
0.4 1.096 29 
0.5 1.551 41 

0.6 1.974 25 
0.7 2.314 80 
0.8 2.538 04 
0.9 2.631 53 
1 .o 2.608 41 
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The next step was a careful determination of the first four transforms f k ( r ;  2) 
corresponding to k = 0, 1, 2 and 3, respectively, related to w k (  r ’ ;  2) = r’2( 1 - r’2)k.  Using 
once more the least-squares method, we found 

fc,2( r )  = 0.868 862f0( r ;  2) + 2.255 746f,( r, 2) 

+ 3.969 987f2( r ;  2) -0.030 124f,( r ;  2) (6.6) 

instead of the true representation given by 

f c , 2 (  r )  = 0.9fo( r ;  2) + 2.2280f1( r ;  2) + 3.9406f2( r ;  2). (6.7) 

It appears from (6.6) that our U function will be reconstructed through 

u , , ~ (  r ’ )  = r’2[0.868 862 + 2.255 746( 1 - r’2)  

+ 3.969 987( 1 - r’2)2 - 0.030 124( 1 - r’2)3] (6.8) 

and we give in table 4 an interesting comparison of both functions ~ , , ~ ( r ’ )  (true and 
reconstructed, respectively denoted uT and uR). Let us also indicate that the same 
technique, when applied to the accurate function f c , 2 (  r )  (i.e. without random errors), 
gives a reconstructed u, ,z(r’)  which does not differ from uT by more than 7 . 0 ~  lo-’ 
everywhere on [0,1]. 

Table 4. 

r’ U T  UR r’ UT UR 

0.0 0.0000 0.0000 0.6 1.4184 1.4151 
0.1 0.0697 0.0696 0.7 1.5000 1.4935 
0.2 0.2668 0.2667 0.8 1.4162 1.4042 
0.3 0.5572 0.5568 0.9 1.1871 1.1669 
0.4 0.8883 0.8875 1 .o 0.9000 0.8689 
0.5 1.1969 1.1953 

7. Future schemes and conclusion 

We have described here a theoretical method for solving the integral equation (2.1) 
which is related to x-ray scanners and corresponds to a bounded integration domain 
(disc D) .  Such a singular problem of the first kind was not previously studied in such 
detail because equation (2.7) is frequently also available and leads to an image 
reconstruction that is much easier to attain. In fact, the present computing techniques 
are not actually efficient enough to challenge the other well known methods of treating 
x-ray data to obtain accurate image reconstructions. Their main interest lies elsewhere 
as they are linked to a different mathematical problem involving as a prime constraint 
the boundedness of the integration disc D ;  they tell us how to proceed and reach the 
required solution when the secondary data f ( M )  become impossible to determine (or 
even to define) outside D. 

For instance, such a lack of information is patent for f ( M )  when we are given as 
primary data times-of-flight of ultrasonic pulses through a studied object. At first sight, 
U( M )  now representing the inverse of the ultrasonic velocity instead of the absorption 
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coefficient, this new problem seems very similar to the previous one. We can write 
once more, exactly as in (1.2), 

J ( N ) =  u ( M ) d s  I, (7.1) 

where N is the midpoint between A (input) and B (output). The trouble is, however, 
that the paths followed by phonons are not straight. Furthermore, the problem cannot 
be limited to a plane and this is another difficulty. Without entering into more details, 
let us indicate that transforms similar to (1.3) can be achieved, leading to a new kind 
of secondary data f ( M ) .  This time, the correspondence between u ( M )  and f ( M )  is 
no longer linear and it is easily understandable that f ( M )  will be rather difficult to 
invert (Guy 1986). When there is not too great a distortion from linearity, it was, 
however, proposed (McKinnon and Bates 1980) to solve first an approximate equation 
analogous to (2.1), suitable iterative corrections being tried afterwards. Unfortunately, 
we have to remember that we cannot adjoin to (2.1) any unbounded equation resembling 
(2.7) a s f ( M )  is not defined here for M E  D (+formula (2.10) does not work). Finally, 
for such problems of ultrasonic imaging, it is clear that we have to know how to solve 
(2.1) directly and the present paper contributes an answer to that important question. 

Appendix. Practical computation of some transforms 

To work out formulae (5.4), it appears necessary to calculate without too many 
difficulties the transforms related to the two following types of functions: 

U,( r’,  cp’) = r” cos(mcp‘)g( r ” )  

Us(r’,  40’) = r“ sin(mcpf)g(r’2). 

In complex notation, both cases can be treated simultaneously. Defining U (  r‘,  cp’) 
through 

U (  r’,  q’) = U,( r ’ ,  cp‘) + i Us(rr ,  cp’) = r” exp(imcp’)g(rt2) (‘42) 

we have, since cp’=  cp + a (see figure 4), 

F(r ,  cp) = Fc(r, cp)+iFs(r, cp) 

+ v / 2  [ I - ~ ~ S I ~ ~ ~ ] ~ ’ ~  

--71/2 

exp(ima)r’mg(r’2) ds  
-[ 1 -r2sin2,y11/2 

[ ~ - r % i n ~ x ] ‘ / ~  

- [ ~ - r ~ s i n ~ ~ l ’ ’ ~  

=exp(imcp) I d x  I 
= 2 exp(imcp) d x  cos(ma)r’mg(r’2) ds. (A3) 

To understand the last transformation performed, it is sufficient to notice that for a 
change of sign of x (symmetry as regards O M ) ,  cos( m a )  will remain unchanged while 
there is also a change of sign for sin(ma). 

Afterwards, taking into account (see figure 4) 

a = .rr/2+(/3 -x) (A41 
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we are able to write, using F(r ,  9) = 2 exp(imq)G(r;  m ) ,  

exp(ima)r'"g(rt2) ds  G(r ;  m) = Re( I:' dX I [ 1 - r ~ s i n ~ x ] ~ / 2  

-[I - r2~ in2X11/2  

exp(imp)r'"g(r") ds  . (A5) 

Now, for two points M i  and MA placed on AB and equidistant from H (i.e. symmetric 
as regards OH), we have the same value for cos( m p )  and a change of sign for sin( m p ) .  
This remark leads to 

1 [1-r2sin2x]I'2 I - [ I  -r2sin2X1'/2 
= Re( i" 1:' exp(-imX) d x  

/o[~-r%in2x]l/* 

G ( r ;  m )  = 2Re i" exp(-imX) dX cos(mp)r'"g(r") d s  ( I:I' 
Considering furthermore that (see figure 4) 

r' cos p = r sin x r'sin p = s 

we obtain 

r" cos(@) = Re[(r s i n ~ f i s ) " ]  

('47) 

where N is the integer equal to or immediately preceding m/2 (i.e. N = m/2 for m 
even and N = ( m  - 1)/2 for m odd). Utilising (A8), it becomes possible to write more 
explicitly two formulae giving G(r ;  m ) .  With the new variable 

z = s / [ l -  r2 sin' XI'/' ('49) 

the results are 

x j0' zZpg[ z' + r2 sin' X (  1 - z')] dz for m even 

and 

X 1;' sin(m,y) 

x lo' zzpg[zz+ r' sin'x(1- z ' ) ]  dz 

x(1- r2 sin2 x )~+ ' / '  d,y 

for m odd. 

Finally, when we choose 

g(r") = (1 - r ' 2 ) k  ('412) 

formulae (A10) and ( A l l )  are changed into formulae (5.4) given previously. 
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